

US Army Corps of Engineers Huntington District

Engineering Geology Challenges at the Marmet Lock Project

Geohazards in Transportation 6th Annual Technical Forum August 2-3, 2006

Mike Nield – Corps of Engineers, Huntington District

Marmet Lock Replacement – Main Topics

US Army Corps of Engineers

Huntington District

Main Topics of Discussion

Marmet Lock Replacement – Main Topics

US Army Corps of Engineers

Huntington District

Main Topics of Discussion 1. PROJECT OVERVIEW a. Site Plan b. Site Coology

b. Site Geology

Marmet Lock Replacement – Main Topics

US Army Corps of Engineers

Huntington District

Main Topics of Discussion 1. PROJECT OVERVIEW a. Site Plan b. Site Geology

2. DEEP SEATED SLIDING

- a. Design Concerns
- **b. Cofferdam Foundation Movement**
- c. New Chamber Lockwall Monoliths

Marmet Lock Replacement – Main Topics

US Army Corps of Engineers

Huntington District

Main Topics of Discussion 1. PROJECT OVERVIEW a. Site Plan b. Site Geology 2. DEEP SEATED SLIDING a. Design Concerns b. Cofferdam Foundation Movement c. New Chamber Lockwall Monoliths **3. GEOLOGIC ASPECTS OF CONSTRUCTION** a. Anchor Installation b. Rock Excavation c. Foundation Preparation & Treatment **Drilled Shaft Foundations d**. e. Foundation Drilling and Grouting

Marmet Lock Replacement – Main Topics

US Army Corps of Engineers

Huntington District

Main Topics of Discussion 1. PROJECT OVERVIEW a. Site Plan b. Site Coology

b. Site Geology

Marmet Lock Replacement – Project Overview

US Army Corps of Engineers Huntington District

Site Plan

Marmet Lock Replacement – Project Overview

US Army Corps of Engineers

Huntington District

Existing Lock – Prior to Construction

Marmet Lock Replacement – Project Overview

US Army Corps of Engineers Huntington District

New Lock – Conceptual Drawing

US Army Corps

of Engineers Huntington District One Corps, One Regiment, One Team

Marmet Lock Replacement – Project

New Lock Chamber Construction began in summer 2002 Cost \$232 million

Overview

Existing Lock -Chambers

New Lock Construction - Ariel View - May 2005

US Army Corps of Engineers Huntington District

Sheet Pile Cell-Cofferdam

Existing Landwall **Portion of** Cofferdam

Contractor Designed Anchored **Retaining Wall**

Overview

New Lock Construction - Ariel View - May 2005

US Army Corps

of Engineers Huntington District

One Corps, One Regiment, One Team

Marmet Lock Replacement – Project Overview

-New Lock Chamber and Approach Walls

New Lock Construction - Ariel View - May 2005

Marmet Lock Replacement – Project Overview

One Corps, One Regiment, One Team 11 Y Y Y **Marmet Lock Replacement – Project Small Diameter Cells** Concrete Select Fill (15.67' r.) Thrust Concrete Top of **Block** Rock Anchors **LEGEND EXISTING LOCKS AND DAM NEW LOCK AND APPROACH WALLS NEW LOCK CULVERT ALIGNMENT COFFER DAMS**

Cofferdam Components – Typical Sections

Cofferdam Components – Typical Sections

Marmet Lock Replacement – Project

Cofferdam Components – Typical Sections

Marmet Lock Replacement – Project Overview

US Army Corps of Engineers Huntington District

New Lock Features – Plan View

Marmet Lock Replacement – Project

Lower Approach Wall

New Lock Features

New Lock Features

Marmet Lock Replacement – Project

New Lock Features

US Army Corps

of Engineers Huntington District One Corps, One Regiment, One Team

Marmet Lock Replacement – Project Overview

Site Geology

Relatively flat top of rock surface

 Sedimentary rock of the Pennsylvanian-aged Kanawha Formation
 Sandstone member (23 to 43 feet thick)
 Shale member (19 to 33 feet thick)

 Low angled bedding with 5°-10° dip to the Northwest

 Slightly fractured with occasional high angled joints (70°-90°)

Geologic Cross Section – Upper Miter Gate

Geologic Cross Section – Chamber Monoliths

US Army Corps

of Engineers

Huntington District

One Corps, One Regiment, One Team

Marmet Lock Replacement – Project Overview Site Geology

Light gray
Moderately hard to hard
Medium to fine grained
Average unconfined compressive strength 8,442 psi

Sandstone Member

US Army Corps of Engineers

Huntington District

One Corps, One Regiment, One Team

Marmet Lock Replacement – Project Overview Site Geology

Thin Shale and Coal Seams within Sandstone

US Army Corps of Engineers Huntington District

Marmet Lock Replacement – Project Overview Site Geology

ROCK	Sliding Friction		Cross Bed Shear		Allowable Bearing	Working Bond	Modulus of
UNIT	phi	С	phi	С	Capacity	Strength	Deformation
	degree	psi	degree	psi	psi	psi	psi X 10 ⁶
Sandstone	30	4	45	73	196	111	1.05
Coal/Shale Seam	23	0	N/A	N/A	N/A	N/A	N/A
Fault Gouge	13	0	N/A	N/A	N/A	N/A	N/A
Shale Member	22	1	30	15	111	56	0.63

Bedrock Strength Parameters

Marmet Lock Replacement – Main Topics

US Army Corps of Engineers

Huntington District

Main Topics of Discussion 1. PROJECT OVERVIEW a. Site Plan b. Site Geology 2. DEEP SEATED SLIDING a. Design Concerns b. Cofferdam Foundation Movement c. New Chamber Lockwall Monoliths **3. GEOLOGIC ASPECTS OF CONSTRUCTION** a. Anchor Installation b. Rock Excavation c. Foundation Preparation & Treatment **Drilled Shaft Foundations d**. e. Foundation Drilling and Grouting

Marmet Lock Replacement – Main Topics

US Army Corps of Engineers

Huntington District

Main Topics of Discussion

2. DEEP SEATED SLIDING

- a. Design Concerns
- **b. Cofferdam Foundation Movement**
- c. New Chamber Lockwall Monoliths

US Army Corps of Engineers Huntington District

Marmet Lock Replacement – Deep Seated Design Concerns Sliding

US Army Corps

of Engineers Huntington District

Marmet Lock Replacement – Deep Seated Design Concerns Sliding

Pre-Construction Condition

Construction Condition

US Army Corps

of Engineers Huntington District

Marmet Lock Replacement – Deep Seated Design Concerns Sliding

Pre-Construction Condition

Construction Condition New Lock Riverwall Backfill Rock Excavation for New Lock Culvert

Permanent Condition One Corps, One Regiment, One Team

US Army Corps of Engineers Huntington District

Marmet Lock Replacement - Deep SeatedDesign ConcernsSliding

STAGED ANCHORING DURING OVERBURDEN EXCAVATION Analyzed for coal/shale seam at foundation (phi=23°, c=0psi)

INSTALL INSTRUMENTATION

US Army Corps

of Engineers Huntington District One Corps, One Regiment, One Team

Marmet Lock Replacement – Deep Seated Design Concerns Sliding

THRUST BLOCK ANCHORED PRIOR TO ROCK EXCAVATION Analyzed for daylighted horizontal fault gouge (phi=13°, c=0psi) SUBSURFACE EXPLORATION PERFORMED **US Army Corps**

of Engineers Huntington District One Corps, One Regiment, One Team

Marmet Lock Replacement – Deep Seated Design Concerns Sliding

COMPLETE EXCAVATION FOR CULVER/INSPECTION TRENCH ESTABLISH PRESENCE AND EXTENT OF WEAK SEAMS – NEW LOCK DETERMINE CORRECIVE FOUNDATION TREATMENT – NEW LOCK

Marmet Lock Replacement – Deep Seated Cofferdam Sliding

of Engineers Huntington District

US Army Corps

Excavation Adjacent to Cofferdam – 3D view

US Army Corps of Engineers

Huntington District

Marmet Lock Replacement – Deep Seated Sliding

Inclinometer Readings - August 2004
US Army Corps of Engineers Huntington District

Marmet Lock Replacement – Deep Seated Sliding

One Corps, One Regiment, One Team

Inclinometer - displacement vs. time

US Army Corps of Engineers Huntington District

Marmet Lock Replacement – Deep Seated Sliding

Inclinometer – displacement vs. time

US Army Corps

of Engineers

Marmet Lock Replacement – Deep Seated Sliding

Huntington District Cofferdam Foundation Movement Response

- Establish Emergency Action Plan Based on Increments of Foundation Movement.
- Increase Instrumentation Readings and Installed Deeper Inclinometers
- Reanalyze Foundation Strength Parameters
- Accelerated Concrete Placement and Installed Additional Rock Anchors

Cofferdam Foundation Movement - Section

Cofferdam Foundation Movement - Section

Cofferdam Foundation Movement - Section

Cofferdam Foundation Movement – Cell 1D

Marmet Lock Replacement – Deep Seated

ĬHĬ

Cofferdam Foundation Movement – M-22

Marmet Lock Replacement – Deep Seated Sliding

of Engineers Huntington District

US Army Corps

Cofferdam Foundation Movement Some displacement is required to engage rock mass shear strength

Establish how much movement is acceptable

SCALE EFFECT OR LENGTH OF SHEARED BLOCK WAS TAKEN INTO CONSIDERATION

0.35 INCHES ESTABLISHED AS APPROACHING FAILURE

Horizontal Displacement -->

One Corps, One Regiment, One Team ΫwΫ **Marmet Lock Replacement – Deep Seated US Army Corps** Sliding **New Lockwall** of Engineers Huntington District Existing Landwall - Cofferdam New Riverwall New Landwall Culvert Weak Seams Sandstone Member

Deep Seated Sliding – Culvert Excavation

Marmet Lock Replacement – Deep Seated

Marmet Lock Replacement – Deep Seated Sliding

of Engineers Huntington District

US Army Corps

Inspection Trench Sidewall - Photo

MONOLITH R-15A

Marmet Lock Replacement – Deep Seated Sliding

of Engineers Huntington District

US Army Corps

Inspection Trench Sidewall - Photo

MONOLITH R-15A

Marmet Lock Replacement – Deep Seated Sliding

Huntington District

of Engineers

US Army Corps

Inspection Trench Sidewall - Map

Marmet Lock Replacement – Main Topics

US Army Corps of Engineers

Huntington District

Main Topics of Discussion 1. PROJECT OVERVIEW a. Site Plan b. Site Geology 2. DEEP SEATED SLIDING a. Design Concerns b. Cofferdam Foundation Movement c. New Chamber Lockwall Monoliths **3. GEOLOGIC ASPECTS OF CONSTRUCTION** a. Anchor Installation b. Rock Excavation c. Foundation Preparation & Treatment **Drilled Shaft Foundations d**. e. Foundation Drilling and Grouting

Marmet Lock Replacement – Main Topics

US Army Corps of Engineers

Huntington District

Main Topics of Discussion

3. GEOLOGIC ASPECTS OF CONSTRUCTION

- a. Anchor Installation
- **b. Rock Excavation**
- c. Foundation Preparation & Treatment
- d. Drilled Shaft Foundations
- e. Foundation Drilling and Grouting

US Army Corps of Engineers Huntington District

Marmet Lock Replacement – Construction Construction Sequence

COFFERDAM – ANCHORS – SOIL EXCAVATION

US Army Corps of Engineers Huntington District

Marmet Lock Replacement – Construction Construction Sequence

SUBSURFACE EXPLORATION - ROCK EXCAVATION

US Army Corps of Engineers Huntington District

Marmet Lock Replacement – Construction Construction Sequence

ROCK EXCAVATION – FOUNDATION PREPARATION

US Army Corps of Engineers Huntington District

Marmet Lock Replacement – Construction Construction Sequence

CONCRETE – FOUNDATION GROUTING

US Army Corps of Engineers Huntington District

Marmet Lock Replacement – Construction FOUNDATION ANCHORS

560 ANCHORS INSTALLED IN COFFERDAM

US Army Corps of Engineers Huntington District

Marmet Lock Replacement – Construction FOUNDATION ANCHORS

DOWN-THE-HOLE HAMMER

6 TO 10 INCH DIA. HOLES -

DRILLING ANCHOR HOLES

US Army Corps of Engineers Huntington District

Marmet Lock Replacement – Construction FOUNDATION ANCHORS

Tropari

WITHIN 0.5° AZIMUTH AND INCLINATION

- LESS THAN 1 INCH DEVIATION PER 10 FEET OF HOLE

ANCHOR ALIGNMENT TESTING

US Army Corps of Engineers Huntington District

Marmet Lock Replacement – Construction FOUNDATION ANCHORS

- ANCHOR HOLES PRESSURE TESTED
- CONSOLIDATION GROUTED
- ANCHOR INSTALLED
- FIRST STAGE GROUTING OF BOND ZONE
- TENSIONED AND TESTED

- SECOND STAGE GROUTING OF FREE LENGTH

ANCHOR TENSIONING

US Army Corps of Engineers Huntington District Marmet Lock Replacement – Construction FOUNDATION ANCHORS

Performance Testing
Proof Testing
Extended Creep Testing

	MUTS	Design Load	Lock Off Load (70% Des. Load)
9 Strand	527 kips	316 kips	369 kips
12 Strand	703 kips	422 kips	492 kips
15 Strand	879 kips	527 kips	615 kips

ANCHOR TENSIONING AND TESTING

US Army Corps of Engineers Huntington District

Marmet Lock Replacement – Construction ROCK EXCAVATION

- Pre-blast Survey of Community
- 50' Maximum Blasting Dimension Along Axis
- Buffer Zone and Sill Excavation Methods
- 3 in/sec Peak Particle Velocity at Nearest Structure
- Line Drilled Perimeters

US Army Corps of Engineers Huntington District

Marmet Lock Replacement – Construction ROCK EXCAVATION

LINE DRILLED PERIMETER

US Army Corps of Engineers

Huntington District

Marmet Lock Replacement – Construction ROCK EXCAVATION

PRODUCTION SHOT

of Engineers

Huntington District

One Corps, One Regiment, One Team

Evaluating Specified Vibration Equation

US Army Corps of Engineers Huntington District

Marmet Lock Replacement – Construction FOUNDATION PREPARATION

OVER BREAK BEHIND LINE DRILLED FACE

US Army Corps of Engineers Huntington District

Marmet Lock Replacement – Construction FOUNDATION PREPARATION

SHOT HOLE DAMAGE

US Army Corps of Engineers

Marmet Lock Replacement – Construction FOUNDATION PREPARATION

Huntington District

CARBONACEOUS LAMINATIONS TREE FOSSILS

US Army Corps of Engineers Huntington District

Marmet Lock Replacement – Construction FOUNDATION PREPARATION

SHALE LENS AND SEAMS

US Army Corps of Engineers Huntington District

Marmet Lock Replacement – Construction FOUNDATION PREPARATION

JONTS WITH ARTESIAN GROUNDWATER FLOW

Marmet Lock Replacement – Construction US Army Corps of Engineers Huntington District

UPSTREAM APPROACH WALLS

Marmet Lock Replacement – Construction US Army Corps of Engineers **DRILLED SHAFT FOUNDATION** Huntington District

(mm) 250.000 SANDSTONE MEMBER 40 CONFINED CONDITION 200.000 SHALE SEAM CONFINED CONDITION 30 150.000 (lbs/in) MN/m) 100.000 10 50.000 SANDSTONE MEMBER SUBJECTED TO CROSS BED SHEARING 0.2

BOREHOLE JACK TESTING

Marmet Lock Replacement – Construction US Army Corps of Engineers **DRILLED SHAFT FOUNDATION** Huntington District

DRILLING 6-FOOT DIAMETER SHAFT

Marmet Lock Replacement – Construction US Army Corps of Engineers **DRILLED SHAFT FOUNDATION** Huntington District

INSTALLING REBAR CAGE & PLACING CONCRETE

Marmet Lock Replacement – Construction US Army Corps of Engineers Huntington District **DRILLED SHAFT FOUNDATION**

SHAFT 14-R SHAFT 14-R 5-6 (F2,3) 5-6 L=63.40 feet L=63.40 feet Spacing=62.9 in Spacing=62.9 In Gain=38418 Gain=38418 (x4) 04/22/2004 19:59 04/22/2004 19:59 Arrival (ms) Time (ms) Septh (40.5 high lov Energy (log)

CSL TESTING AND LOW DENSITY CONCRETE

Marmet Lock Replacement – Construction

US Army Corps of Engineers

Huntington District

Foundation Drilling and Grouting

NOT TO SCALE

- 10' Spacing Between Primary and Secondary Holes
- Optional Tertiary and Higher Order Holes
- All Holes Pressure Testing
- Neat Cement Grout

Marmet Lock Replacement – Construction US Army Corps of Engineers **Foundation Drilling and Grouting**

Huntington District

Drilling Grout Holes

Grout Plant

Grout Header

Marmet Lock Replacement – Main Topics

US Army Corps of Engineers

Huntington District

Main Topics of Discussion 1. PROJECT OVERVIEW a. Site Plan b. Site Geology 2. DEEP SEATED SLIDING a. Design Concerns b. Cofferdam Foundation Movement c. New Chamber Lockwall Monoliths **3. GEOLOGIC ASPECTS OF CONSTRUCTION** a. Anchor Installation b. Rock Excavation c. Foundation Preparation & Treatment **Drilled Shaft Foundations** C. e. Foundation Drilling and Grouting

Marmet Lock Replacement – Conclusion

QUESTIONS AND ANSWERS

Contact Information

Mike Nield 304-399-5056 michael.c.nield@lrh01.usace.army.mil