Creating Value ...

... Delivering Solutions

Determination of the Bearing Resistance of Rock in West Virginia, 2012 Update

Joe Carte, P.E. W.V Department of Transportation

Scott Zang, P.E. Michael Baker Jr., Inc.

The Problem

ASD Design

- σ_{v allowable} is a presumptive allowable bearing capacity
- Obtained from AASHTO Specs
- Based on a limiting settlement only (usually ½ to 1")
 - Shear failure of foundation <u>assumed</u> to be not controlling

 $\sigma_{v max} < \sigma_{v allowable}$

Presumptive (AASHTO 2006 Table 10.6.2.6-1 from NAVFAC DM-7)

k	<i>z</i> 、			
		BEARING RESISTANCE (KSF)		
TYPE OF BEARING MATERIAL	CONSISTENCY IN PLACE	Ordinary Range	Recommended Value of Use	
Massive crystalline igneous and metamorphic rock: granite, diorite, basalt, gneiss, thoroughly cemented conglomerate (sound condition allows minor cracks)	Very hard, sound rock	120 to 200	160	
Foliated metamorphic rock: slate, schist (sound condition allows minor cracks)	Hard sound rock	60 to 80	70	
Sedimentary rock: hard cemented shales, siltstone, sandstone, limestone without cavities	Hard sound rock	30 to 50	40	
Weathered or broken bedrock of any kind, except highly argillaceous rock (shale)	Medium hard rock	16 to 24	20	
Compaction shale or other highly argillaceous rock in sound condition	Medium hard rock	16 to 24	20	
Well-graded mixture of fine- and coarse- grained soil: glacial till, hardpan, boulder clay (GW-GC, GC, SC)	Very dense	16 to 24	20	
Gravel, gravel-sand mixture, boulder-gravel mixtures (GW, GP, SW, SP)	Very dense Medium dense to dense Loose	12 to 20 8 to 14 4 to 12	14 10 6	
Coarse to medium sand, and with little gravel (SW, SP)	Very dense Medium dense to dense Loose	8 to 12 4 to 8 2 to 6	8 6 3	
Fine to medium sand, silty or clayey medium to coarse sand (SW, SM, SC)	Very dense Medium dense to dense Loose	6 to 10 4 to 8 2 to 4	6 5 3	
Fine sand, silty or clayey medium to fine sand (SP, SM, SC)	Very dense Medium dense to dense Loose	6 to 10 4 to 8 2 to 4	6 5 3	
Homogeneous inorganic clay, sandy or silty clay (CL, CH)	Very stiff to hard Medium stiff to stiff Soft	6 to 12 2 to 6 1 to 2	8 4 1	
Inorganic silt, sandy or clayey silt, varved silt- clay-fine sand (ML, MH)	Very stiff to hard Medium stiff to stiff Soft	4 to 8 2 to 6 1 to 2	6 3 1	

LRFD Design

Service Limit State

 Compute displacements and compare to tolerable displacement

١Х

 $\Lambda \mathbf{7}$

Strength Limit State

- Check sliding failure
- Check overturning (e)
- Check bearing failure

Controlled for soft, fractured rocks

Current LRFD Methodology

- 1. 10.6.3.5 allows flexibility in the method used
- 2. Many engineers use equation 10.8.3.5.4c-2
- 3. This is equivalent to the N_{ms} method that was presented in the old ASD specifications

Research (50 lbs of geotech reports)

Estimate of RMR based on logs and descriptions

Recommended allowable bearing capacity (presumptive)

Estimate of GSI and other rock mass strength parameters

Design Recommendations

- Needed to be as objective as possible
- Needed to be easily implemented in the field
- Needed to provide results consistent with previous successful practice

Design Recommendations

- RMR as published in AASHTO selected as a reasonable basis for bearing resistance determination
- Different methods for RMR < 50 and RMR > 50

Design Recommendation for RMR < 50

• Empirical correlation of RMR to C and ϕ_f (Serafim and Pereira, 1983; Bieniawski, 1989

Cohesion = $C = 104 \times RMR$ (in PSF) Friction = $\phi_f = 5 + \frac{RMR}{2}$

Design Recommendation for RMR < 50

• General bearing resistance equation

Design Recommendation for RMR > 50

• m & s (AASHTO 2006 10.4.6.4-4) Hoek and Brown

Table 10.4.6.4-4 Approximate relationship between rock-mass quality and material constants used in defining nonlinear strength (Hoek and Brown, 1988)

		Rock Type				
Rock Quality	Constants	 A = Carbonate rocks with well developed crystal cleavage— dolomite, limestone and marble B = Lithified argrillaceous rocks—mudstone, siltstone, shale and slate (normal to cleavage) C = Arenaceous rocks with strong crystals and poorly developed crystal cleavage—sandstone and quartzite D = Fine grained polyminerallic igneous crystalline rocks— andesite, dolerite, diabase and rhyolite E = Coarse grained polyminerallic igneous & metamorphic crystalline rocks—amphibolite, gabbro gneiss, granite, norite, quartz-diorite 				
		A	B	C	D	E
INTACT ROCK SAMPLES Laboratory size specimens free from discontinuities CSIR rating: <i>RMR</i> = 100	m s	7.00 1.00	10.00 1.00	15.00 1.00	17.00 1.00	25.00 1.00
VERY GOOD QUALITY ROCK MASS Tightly interlocking undisturbed rock with unweathered joints at 3–10 ft. CSIR rating: <i>RMR</i> = 85	m s	2.40 0.082	3.43 0.082	5.14 0.082	5.82 0.082	8.567 0.082
GOOD QUALITY ROCK MASS Fresh to slightly weathered rock, slightly disturbed with joints at 3–10 ft. CSIR rating: <i>RMR</i> = 65	m s	0.575 0.00293	0.821 0.00293	1.231 0.00293	1.395 0.00293	2.052 0.00293
FAIR QUALITY ROCK MASS Several sets of moderately weathered joints spaced at 1–3 ft. CSIR rating: <i>RMR</i> = 44	m s	0.128 0.00009	0.183 0.00009	0.275 0.00009	0.311 0.00009	0.458 0.00009
POOR QUALITY ROCK MASS Numerous weathered joints at 2 to 12 in.; some gouge. Clean compacted waste rock. CSIR rating: <i>RMR</i> = 23	m s	0.029 3 x 10 ⁻⁶	0.041 3 x 10 ⁻⁶	0.061 3 x 10 ⁻⁶	0.069 3 x 10 ⁻⁶	0.102 3 x 10 ⁻⁶
VERY POOR QUALITY ROCK MASS Numerous heavily weathered joints spaced < 2 in. with gouge. Waste rock with fines. CSIR rating: <i>RMR</i> = 3	m s	0.007 1 x10 ⁻⁷	0.010 1 x10 ⁻⁷	0.015 1 x10 ⁻⁷	0.017 1 x10 ⁻⁷	0.025 1 x10 ⁻⁷

Design Recommendation for RMR > 50

• Lower bound equation (AASHTO 2006 10.8.3.5.4c-2)

$$q_{n} = \left[\sqrt{s} + \sqrt{(m\sqrt{s} + s)}\right]q_{u}$$

$$e_{b} \neq q_{n} > \frac{\sqrt{v}}{B}\left[1 + \frac{6e_{b}}{B}\right]$$

1200

Implementation of RMR

Contract Documents

Inspector Handbook

Implementation of RMR

Implementation of Design Procedures

BRIDGE DESIGN MANUAL

WEST VIRGINIA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS ENGINEERING DIVISION

March 1, 2004 Includes 2006 Interim and Errata 3.12 FOUNDATIONS

3.12.1 General

Unless directed otherwise by the Director of Engineering Division, all substructures are to be founded uppe bedrock; whether by spread footings, piles or drilled caissons. Only end bearing piles, ther driven or predrilled and driven, are acceptable. Friction or combination friction and bearing piles shall not be used.

3.12.1.1.1.1 Mining and Mine Subsidence

If the project is in area shown in figure 3.12.1.1.1-1, investigate the potential for mine subsidence related problems. Mining and mine subsidence can impact bridge structures due to loss of support for substructure elements, excessive differential settlement of substructures, and degradation of structural materials from acid surface and ground water.

For more detailed information on the potential for mining related hazards, refer to:

H.M. King and D.S. Kirstein, 1987, Mineral Resources of West Virginia: 1:500,000, 63" x 34", full color. Shows minable coal extent, oil and gas fields, rock salt extent, major limestone outcrops, potential areas for limestone deep mining, Ohio River sand-and-gravel areas, transportation system (major highways, railroads, and navigable

Performance of implemented solution

ssues

Discontinuity at RMR=50
Resistance factor
Confusion about design methodology
Presentation of recommended bearing resistance for RMR < 50

Resistance Factor

Calibration to ASD:

$$FS = \gamma / \phi$$

Average load factor $\gamma = 1.4$

For
$$\phi = 0.5$$
; FS = 2.8

For $\phi = 0.45$; FS = 3.1

 φ = 0.45 will be recommended in BDM

Presentation of Bearing Resistance

Conclusions

RMR = 50 is appropriate split between

methods

Not an LRED statistical approach but a calibration to past successful plactice retaining as much of AASHTO as

Conclusions

• Many lewer complaints about "unreasonable" bearing resistance

Creating Value ...

... Delivering Solutions

Questions?

Joe Carte, P.E. W.V Department of Transportation

Scott Zang, P.E. Michael Baker Jr., Inc.

